DOI: 10.3390/en18020246 ISSN: 1996-1073

An Integrated Strategy for Hybrid Energy Storage Systems to Stabilize the Frequency of the Power Grid Through Primary Frequency Regulation

Dan Zhou, Zhiwei Zou, Yangqing Dan, Chenxuan Wang, Chenyuan Teng, Yuanlong Zhu

As the penetration of renewable energy sources (RESs) in power systems continues to increase, their volatility and unpredictability have exacerbated the burden of frequency regulation (FR) on conventional generator units (CGUs). Therefore, to reduce frequency deviations caused by comprehensive disturbances and improve system frequency stability, this paper proposes an integrated strategy for hybrid energy storage systems (HESSs) to participate in primary frequency regulation (PFR) of the regional power grid. Once the power grid frequency exceeds the deadband (DB) of the HESS, the high-frequency signs of the power grid frequency are managed by the battery energy storage system (BESS) through a division strategy, while the remaining parts are allocated to pumped hydroelectric energy storage (PHES). By incorporating positive and negative virtual inertia control and adaptive droop control, the BESS effectively maintains its state of charge (SOC), reduces the steady-state frequency deviation of the system, and provides rapid frequency support. When the system frequency lies within the DB of the HESS, an SOC self-recovery strategy restores the BESS SOC to an ideal range, further enhancing its long-term frequency regulation (FR) capability. Finally, a regional power grid FR model is established in the RT-1000 real-time simulation system. Simulation validation is conducted under three scenarios: step disturbances, short-term continuous disturbances, and long-term RES disturbances. The results show that the proposed integrated strategy for HESS participation in PFR not only significantly improves system frequency stability but also enhances the FR capability of the BESS.

More from our Archive