Sanghamitra Pradhan, Sujata Mishra

An Overview on Resource and Recovery Prospectives of the Critical Element Neodymium

  • Industrial and Manufacturing Engineering
  • Filtration and Separation
  • Process Chemistry and Technology
  • Biochemistry
  • Chemical Engineering (miscellaneous)
  • Bioengineering

AbstractNeodymium is critically scarce and is often used in supportable technologies such as permanent magnets, batteries, and catalysts. The extraction of it from virgin ores causes environmental degradation and recycling of end‐of‐life (EOL) products proves to be an alternative to meet its future criticality. From an environmental and economic point of view, magnets produced from recovered neodymium perform better than the ones produced from virgin neodymium. In this review various technologies such as hydro metallurgy, pyro metallurgy, supercritical CO2 extraction, desalination, and adsorption have been discussed for the recovery of this metal from different EOL sources. The advantages and limitations of these methods are summarized. Different experimental status like sources, temperature, aqueous phase composition, organic phase make up, and maximum recovery efficiency are also looked upon. This review may prove beneficial for the researchers to design recovery road maps under different circumstances.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive