Hongxu Tian, Wenkang Huang, Zimeng Liu, Hui Ma

Analysis of Dynamic Mesh Stiffness and Dynamic Response of Helical Gear Based on Sparse Polynomial Chaos Expansion

  • Electrical and Electronic Engineering
  • Industrial and Manufacturing Engineering
  • Control and Optimization
  • Mechanical Engineering
  • Computer Science (miscellaneous)
  • Control and Systems Engineering

This paper presents an efficient method for obtaining the dynamic mesh stiffness and dynamic response of a helical gear pair. Unlike the traditional dynamic model that utilizes a time-dependent sequence, the mesh stiffness using the presented method is updated according to the gear displacement vector at each sub-step of the numerical calculation. Three-dimensional loaded tooth contact analysis (3D LTCA) is used to determine the mesh stiffness, and a surrogate model based on sparse polynomial chaos expansion (SPCE) is proposed to improve the computational efficiency, which is achieved by reducing the number of coefficients in the polynomial chaos expansion (PCE) model though a quantum genetic algorithm. During the calculation, the gear displacement vector at each sub-step is converted into the changes in center distance, misalignment angle, and mesh force, which are then introduced into the SPCE model to update the mesh stiffness for subsequent calculations. The results suggest that the SPCE model exhibits high accuracy and can significantly improve the computational efficiency of the PCE model, making it suitable for dynamic calculations. Upon updating the mesh stiffness during the dynamic calculation, the mesh stiffness declines, the dynamic transmission error (DTE) increases, and the frequency components of the responses change significantly.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive