Li‐Pang Chen, Bangxu Qiu

Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates

  • Applied Mathematics
  • General Agricultural and Biological Sciences
  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine
  • Statistics and Probability

AbstractIn this paper, we analyze the length‐biased and partly interval‐censored data, whose challenges primarily come from biased sampling and interfere induced by interval censoring. Unlike existing methods that focus on low‐dimensional data and assume the covariates to be precisely measured, sometimes researchers may encounter high‐dimensional data subject to measurement error, which are ubiquitous in applications and make estimation unreliable. To address those challenges, we explore a valid inference method for handling high‐dimensional length‐biased and interval‐censored survival data with measurement error in covariates under the accelerated failure time model. We primarily employ the SIMEX method to correct for measurement error effects and propose the boosting procedure to do variable selection and estimation. The proposed method is able to handle the case that the dimension of covariates is larger than the sample size and enjoys appealing features that the distributions of the covariates are left unspecified.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive