Shu-Shan Li, Die Peng, Heng Wang, Feng-Jian Zhang, Hong-Mei Li, Yi-Jun Xie, Ai-Jiu Chen, Wei Xie

Analysis of Shear Model for Steel-Fiber-Reinforced High-Strength Concrete Corbels with Welded-Anchorage Longitudinal Reinforcement

  • General Materials Science

According to the shear capacity test results of six steel-fiber-reinforced high-strength concrete (SFHSC) corbels with welded-anchorage longitudinal reinforcement under concentrated load, the effects of shear span ratio and steel fiber volume fraction on the failure mode, cracking load and ultimate load of corbel specimens were analyzed. On the basis of experimental research, the shear transfer mechanism of corbel structure was discussed. Then, a modified softened strut-and-tie model (MSSTM), composed of the diagonal and horizontal mechanisms, was proposed, for steel-fiber-reinforced high-strength concrete corbels. The contributions of concrete, steel fiber and horizontal stirrups to the shear bearing capacity of the corbels were clarified. A calculation method for the shear bearing capacity of steel-fiber-reinforced high-strength concrete corbels was established and was simplified on this basis. The calculation results of the model were compared with the test values and calculation results of the GB50010-2010 code, the ACI318-19 code, the EN 1992-1-1 code and the CSA A23.3-19 code. The results showed that the concrete corbel with small shear span ratio mainly has two typical failure modes: shear failure and diagonal compression failure. With the increase in shear span ratio, the shear capacity of corbels decreases. Steel fiber can improve the ductility of a reinforced concrete corbel, but has little effect on the failure mode of the diagonal section. The calculated values of the national codes were lower than the experimental values, and the results were conservative. The theoretical calculation values of the shear capacity calculation model of the corbels were close to the experimental results. In addition, the model has a clear mechanical concept considering the tensile properties of steel-fiber-reinforced high-strength concrete and the influence of horizontal stirrups, which can reasonably reflect the shear transfer mechanism of corbels.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive