Mengya Zhang, Shucheng Tan, Jinxuan Zhou, Chao Wang, Feipeng Liu

Analyzing Resource and Environment Carrying Capacity of Kunming City Based on Fuzzy Matter–Element Model

  • Management, Monitoring, Policy and Law
  • Renewable Energy, Sustainability and the Environment
  • Geography, Planning and Development
  • Building and Construction

The determination of the sustainable development of a region requires estimating its carrying capacity in terms of resources and environment. It is essential to investigate the carrying capacity of Kunming City to comprehend its rapid development and create a resource and environment-friendly society. This research involved the selection of a set of 35 evaluation indicators from three categories: resources, environment, and social economy. These indicators were chosen based on statistical data obtained from Kunming City between 2011 and 2020. An evaluation system was established using the entropy weight method to determine the weight of these indicators. Subsequently, the fuzzy matter–element analysis method was utilized to construct the European closeness model of Kunming’s resource and environmental carrying capacity. The correlation between the carrying capacity of resources and environment and sub-carrying capacities was analyzed using Pearson’s correlation coefficient to determine the degree of influence of different aspects on the carrying capacity of resources and environment in Kunming. The results show a consistent upward trend in the carrying capacity of resources and environment in Kunming City from 2011 to 2019. However, in 2020, due to national policy adjustments and the impact of COVID-19 on the social economy, the resource and environment carrying capacity index in Kunming City slightly decreased.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive