João Nobre, E. J. Solteiro Pires, Arsénio Reis

Anomaly Detection in Microservice-Based Systems

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Currently, distributed software systems have evolved at an unprecedented pace. Modern software-quality requirements are high and require significant staff support and effort. This study investigates the use of a supervised machine learning model, a Multi-Layer Perceptron (MLP), for anomaly detection in microservices. The study covers the creation of a microservices infrastructure, the development of a fault injection module that simulates application-level and service-level anomalies, the creation of a system monitoring dataset, and the creation and validation of the MLP model to detect anomalies. The results indicate that the MLP model effectively detects anomalies in both domains with higher accuracy, precision, recovery, and F1 score on the service-level anomaly dataset. The potential for more effective distributed system monitoring and management automation is highlighted in this study by focusing on service-level metrics such as service response times. This study provides valuable information about the effectiveness of supervised machine learning models in detecting anomalies across distributed software systems.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive