Applied Machine Learning for Information Security
Sagar Samtani, Edward Raff, Hyrum Anderson- Computer Networks and Communications
- Computer Science Applications
- Hardware and Architecture
- Safety Research
- Information Systems
- Software
Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the last half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.