Diego Cardoso Fragoso, Luana Michelli Oliveira de Paula Salles, Samira Luisa Apóstolos Pereira, Dagoberto Callegaro, Douglas Kazutoshi Sato, Carolina de Medeiros Rimkus

AQP4-IgG NMOSD, MOGAD, and double-seronegative NMOSD: is it possible to depict the antibody subtype using magnetic resonance imaging?

  • Neurology
  • Neurology (clinical)

Abstract Background There is clinical and radiological overlap among demyelinating diseases. However, their pathophysiological mechanisms are different and carry distinct prognoses and treatment demands. Objective To investigate magnetic resonance imaging (MRI) features of patients with myelin-oligodendrocyte glycoprotein associated disease (MOGAD), antibody against aquaporin-4(AQP-4)-immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG NMOSD), and double-seronegative patients. Methods A cross-sectional retrospective study was performed to analyze the topography and morphology of central nervous system (CNS) lesions. Two neuroradiologists consensually analyzed the brain, orbit, and spinal cord images. Results In total, 68 patients were enrolled in the study (25 with AQP4-IgG-positive NMOSD, 28 with MOGAD, and 15 double-seronegative patients). There were differences in clinical presentation among the groups. The MOGAD group had less brain involvement (39.2%) than the NMOSD group (p = 0.002), mostly in the subcortical/juxtacortical, the midbrain, the middle cerebellar peduncle, and the cerebellum. Double-seronegative patients had more brain involvement (80%) with larger and tumefactive lesion morphology. In addition, double-seronegative patients showed the longest optic neuritis (p = 0.006), which was more prevalent in the intracranial optic nerve compartment. AQP4-IgG-positive NMOSD optic neuritis had a predominant optic-chiasm location, and brain lesions mainly affected hypothalamic regions and the postrema area (MOGAD versus AQP4-IgG-positive NMOSD, p= 0 .013). Furthermore, this group had more spinal cord lesions (78.3%), and bright spotty lesions were a paramount finding to differentiate it from MOGAD (p = 0.003). Conclusion The pooled analysis of lesion topography, morphology, and signal intensity provides critical information to help clinicians form a timely differential diagnosis.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive