Benjamin G. Gorman, Mark A. Lifson, Nahid Y. Vidal

Artificial intelligence and frozen section histopathology: A systematic review

  • Dermatology
  • Histology
  • Pathology and Forensic Medicine

AbstractFrozen sections are a useful pathologic tool, but variable image quality may impede the use of artificial intelligence and machine learning in their interpretation. We aimed to identify the current research on machine learning models trained or tested on frozen section images. We searched PubMed and Web of Science for articles presenting new machine learning models published in any year. Eighteen papers met all inclusion criteria. All papers presented at least one novel model trained or tested on frozen section images. Overall, convolutional neural networks tended to have the best performance. When physicians were able to view the output of the model, they tended to perform better than either the model or physicians alone at the tested task. Models trained on frozen sections performed well when tested on other slide preparations, but models trained on only formalin‐fixed tissue performed significantly worse across other modalities. This suggests not only that machine learning can be applied to frozen section image processing, but also use of frozen section images may increase model generalizability. Additionally, expert physicians working in concert with artificial intelligence may be the future of frozen section histopathology.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive