Mathew P. Neal, Donald F. Weaver

Assessing electron conduction mechanisms in highly organized surface water on a model neuronal lipid using quantum chemical methods

  • Organic Chemistry
  • General Chemistry
  • Catalysis

A comprehensive characterization of key mechanisms underlying signal transmission within the human brain remains an unsolved problem. The neuronal surface, composed principally of phosphatidylcholine (POPC), has a known ordering effect on water. This produces highly organized water layers (OWLs) at the neuron–water interface—the neurochemical implications of which are not currently understood. The human brain is 75% water by volume, with folds and grooves to maximize surface area, suggesting that characterization of neuronal OWLs may contribute to an understanding of neuronal signal transmission. Previous experimental work has measured enhanced conductivity of POPC OWLs relative to bulk water. The mechanism underlying this conductivity is still debated. Using quantum chemical methods on a POPC–water interface model system, we present data characterizing OWL conductance. Non-equilibrium Green's function calculation results demonstrate that there is negligible electron transfer-based conductivity through the OWL at biological temperatures. This is consistent with existing studies suggesting the Grotthuss mechanism as the most likely explanation for experimentally observed enhanced conductivity at the POPC–water interface. The broader implications of enhanced proton conductivity at the neuron–water interface are discussed.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive