Assessment of Syngas Storage Tank Hazards Taking Account of the Domino Effect
Andrzej Rusin, Katarzyna Stolecka-Antczak- Energy (miscellaneous)
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
- Electrical and Electronic Engineering
- Control and Optimization
- Engineering (miscellaneous)
- Building and Construction
In most countries energy needs are satisfied using fossil fuels. Fossil fuel combustion involves environmental pollution and greenhouse gas emissions. The effect of the depletion of natural resources and the growing awareness of the need to protect the environment are the reasons that clean energy and alternative energy sources have been significant research issues. One of the most important technologies enabling efficient generation of low-emission energy is the gasification process of synthesis gas production. Syngas is primarily composed of hydrogen and carbon monoxide, but depending on the feedstock, it can also contain smaller concentrations, e.g., of carbon dioxide, methane and nitrogen. Because synthesis gas contains flammable and toxic substances, it may pose hazards to humans and the environment at every stage of gas production, storage, transport or final utilization if released uncontrollably. This paper presents the results of analyses related to hazards created by an uncontrollable release of synthesis gas during storage. A failure of a syngas system may cause damage to other, subsequent technological systems and facilities located in the neighborhood and containing dangerous substances. The problem gains special significance if syngas is stored in many tanks, where a failure of one may result in damage to subsequent tanks due to the so-called domino effect. The conditions in which the domino effect may occur are analyzed and the effect occurrence probability is determined depending on the mutual location of the tanks.