Kaiyi Yang, Lisheng Zhang, Zhengjie Zhang, Hanqing Yu, Wentao Wang, Mengzheng Ouyang, Cheng Zhang, Qi Sun, Xiaoyu Yan, Shichun Yang, Xinhua Liu

Battery State of Health Estimate Strategies: From Data Analysis to End-Cloud Collaborative Framework

  • Electrical and Electronic Engineering
  • Electrochemistry
  • Energy Engineering and Power Technology

Lithium-ion batteries have become the primary electrical energy storage device in commercial and industrial applications due to their high energy/power density, high reliability, and long service life. It is essential to estimate the state of health (SOH) of batteries to ensure safety, optimize better energy efficiency and enhance the battery life-cycle management. This paper presents a comprehensive review of SOH estimation methods, including experimental approaches, model-based methods, and machine learning algorithms. A critical and in-depth analysis of the advantages and limitations of each method is presented. The various techniques are systematically classified and compared for the purpose of facilitating understanding and further research. Furthermore, the paper emphasizes the prospect of using a knowledge graph-based framework for battery data management, multi-model fusion, and cooperative edge-cloud platform for intelligent battery management systems (BMS).

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive