DOI: 10.3390/molecules29061343 ISSN: 1420-3049

Chemical Composition Variation in Essential Oil and Their Correlation with Climate Factors in Chinese Prickly Ash Peels (Zanthoxylum armatum DC.) from Different Habitats

Qianqian Qian, Zhihang Zhuo, Yaqin Peng, Danping Xu
  • Chemistry (miscellaneous)
  • Analytical Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Molecular Medicine
  • Drug Discovery
  • Pharmaceutical Science

Essential oils are secondary metabolites in plants with a variety of biological activities. The flavor and quality of Zanthoxylum armatum DC. are mainly determined by the essential oil components in the Chinese prickly ash peels. In this study, the correlation between climate change in different regions and the content of essential oils of Z. armatum was investigated using gas chromatography–mass spectrometry (GC/MS) and multivariate statistical analysis. The Z1–24 refers to 24 batches of samples from different habitats. A total of 145 essential oils were detected in 24 batches of samples, with the highest number of terpene species and the highest content of alcohol. The relative odor activity (ROAV) values identified nine main flavor compounds affecting the odor of Z. armatum. Linalool, decanal, and d-limonene were the most critical main flavor compounds, giving Z. armatum a spicy, floral, oily, and fruity odor. The results of hierarchical cluster analysis (HCA) and principal component analysis (PCA) classified Z5 into a separate group, Z2 and Z7 were clustered into one group, and the rest of the samples were classified into another group. Correlation analysis and path analysis showed that temperature and precipitation were the main climatic factors affecting essential oils. Comparisons can be made with other plants in the genus Zanthoxylum to analyze differences in essential oil type and content. This study contributes to the identification of Z. armatum quality, promotes the accumulation of theories on the effects of climatic factors on essential oils, and enriches the site selection and breeding of Z. armatum under similar climatic conditions.

More from our Archive