Chryseobacterium metallicongregator, sp. nov., a bacterium possessing metallophore activity towards rare earth elements
Emily Spotts, Nathan Guy, George Lengyel, Jonathan Franks, Chris Maltman- General Medicine
- Ecology, Evolution, Behavior and Systematics
- Microbiology
A polyphasic taxonomic study was carried out on strain ES2T, isolated from sediment of a wetland created to remediate acid drainage from a coal mine. The rod-shaped bacterium formed yellow/orange pigmented colonies and produced the pigment flexirubin. The 16S rRNA gene sequence results assigned the strain to Chryseobacterium, with 98.9 and 98.3 % similarity to Chryseobacterium vietnamense and Chryseobacterium cucumeris, respectively. Computation of the average nucleotide identity and digital DNA–DNA hybridization values with the closest phylogenetic neighbours of ES2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids of strain ES2T were iso-C15 : 0, iso-C17 : 1 ω9c, iso C17 : 0 3-OH, and iso-C15 : 0 2-OH. The DNA G+C content was 35.5 mol%. The major polar lipid was phosphatidylethanolamine while menaquinone-6 was the only menaquinone found. This bacterium has been previously shown to possess metallophore activity towards rare earth elements, and based on genome sequencing, possesses all required genes for siderophore production/activity, possibly identifying the source of this unique ability. On the basis of the results obtained here, this bacterium is assigned to the genus Chryseobacterium as representing a new species with the name Chryseobacterium metallicongregator sp. nov., type strain ES2T (=NRRL B-65679T=KCTC 102120T).