Arlene M. Fiore, Loretta J. Mickley, Qindan Zhu, Colleen B. Baublitz

Climate and Tropospheric Oxidizing Capacity

  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Astronomy and Astrophysics

The hydroxyl radical (OH) largely controls the tropospheric self-cleansing capacity by reacting with gases harmful to the environment and human health. OH concentrations are determined locally by competing production and loss processes. Lacking strong observational constraints, models differ in how they balance these processes, such that the sign of past and future OH changes is uncertain. In a warmer climate, OH production will increase due to its water vapor dependence, partially offset by faster OH-methane loss. Weather-sensitive emissions will also likely increase, although their net impact on global mean OH depends on the balance between source (nitrogen oxides) and sink (reactive carbon) gases. Lightning activity increases OH, but its response to climate warming is of uncertain sign. To enable confident projections of OH, we recommend efforts to reduce uncertainties in kinetic reactions, in measured and modeled OH, in proxies for past OH concentrations, and in source and sink gas emissions. ▪ OH is strongly modulated by internal climate variability despite its lifetime of a few seconds at most, with implications for interpreting trends in methane. ▪ Improved kinetic constraints on key reactions would strengthen confidence in regional and global OH budgets, and in the response of OH to climate change. ▪ Future OH changes will depend on uncertain and compensating processes involving weather-sensitive chemistry and emissions, plus human choices. ▪ Technological solutions to climate change will likely impact tropospheric oxidizing capacity and merit further study prior to implementation. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive