CoAP/DTLS Protocols in IoT Based on Blockchain Light Certificate
David Khoury, Samir Haddad, Patrick Sondi, Patrick Balian, Hassan Harb, Kassem Danach, Joseph Merhej, Jinane SayahThe Internet of Things (IoT) is expanding rapidly, but the security of IoT devices remains a noteworthy concern due to resource limitations and existing security conventions. This research investigates and proposes the use of a Light certificate with the Constrained Application Protocol (CoAP) instead of the X509 certificate based on traditional PKI/CA. We start by analyzing the impediments of current CoAP security over DTLS with the certificate mode based on CA root in the constrained IoT device and suggest the implementation of LightCert4IoT for CoAP over DTLS. The paper also describes a new modified handshake protocol in DTLS applied for IoT devices and Application server certificate authentication verification by relying on a blockchain without the complication of the signed certificate and certificate chain. This approach streamlines the DTLS handshake process and reduces cryptographic overhead, making it particularly suitable for resource-constrained environments. Our proposed solution leverages blockchain to reinforce IoT gadget security through immutable device characters, secure device registration, and data integrity. The LightCert4IoT is smaller in size and requires less power consumption. Continuous research and advancement are pivotal to balancing security and effectiveness. This paper examines security challenges and demonstrates the effectiveness of giving potential solutions, guaranteeing the security of IoT networks by applying LightCert4IoT and using the CoAP over DTLS with a new security mode based on blockchain.