Combinatorial entropy determines the early stages of nucleation
Da‐Hyun Koo, Ho Jun Park, Jeong‐Mo ChoiAbstract
Biomolecular phase separation, a complex phenomenon within living systems, has garnered significant interest due to its diverse roles in cellular organization and function. Despite its importance, studying phase separation dynamics experimentally, particularly in the early stages, poses challenges. Our study investigates the dynamics of biomolecular phase separation using a graph‐based simulation module, particularly emphasizing its early stages. Through a simplified model, we dissect the influences of various factors on collective behavior, highlighting the crucial role of combinatorial entropy in percolation dynamics. This study offers valuable insights into the fundamental principles governing biomolecular phase separation, with implications for understanding cellular processes and disease mechanisms.