Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study
Roberto Spotorno, Elisa Fracchia, Christian Krancher, Romina Krieg, Ralf Theiß, Peter Dültgen, Francesco Marco Pezzana, Federico Simone Gobber, Marco Actis Grande, Paolo Piccardo- Materials Chemistry
- Metals and Alloys
- Surfaces, Coatings and Films
- Mechanical Engineering
- Mechanics of Materials
- Environmental Chemistry
- Materials Chemistry
- Metals and Alloys
- Surfaces, Coatings and Films
- Mechanical Engineering
- Mechanics of Materials
- Environmental Chemistry
- Materials Chemistry
- Metals and Alloys
- Surfaces, Coatings and Films
- Mechanical Engineering
- Mechanics of Materials
- Environmental Chemistry
Abstract
The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis detected three processes related to the electrochemical double layer, a passive film and a diffusive contribution associated with the dissolution/precipitation of corrosion products. Potentiodynamic scans revealed a cathodically controlled corrosion mechanism and the presence of active–passive behavior at anodic potentials for both alloys studied. Polarization of the samples at selected potentials in the anodic branch allowed the investigation of the reactions involved, highlighting an improved corrosion resistance of the pseudoelastic alloy. The corrosion rates of the pseudoelastic and pseudoplastic alloys, after 100 h of immersion, were determined to be 0.007 and 0.011 mmpy, respectively. The post‐experiment characterization was carried out by means of scanning electron microscopy, micro‐Raman spectroscopy and X‐ray diffraction, supporting the electrochemical results.