DOI: 10.3390/wevj15030119 ISSN: 2032-6653

Design and Optimisation of a 5 MW Permanent Magnet Vernier Motor for Podded Ship Propulsion

Nima Arish, Maarten J. Kamper, Rong-Jie Wang
  • Automotive Engineering

The evolution of electric propulsion systems in the maritime sector has been influenced significantly by technological advancements in power electronics and machine design. Traditionally, these systems have employed surface-mounted permanent magnet synchronous motors (PMSMs) in podded configurations. However, the advent of permanent magnet Vernier motors (PMVMs), which leverage magnetic gearing effects, presents a novel approach with promising potential. This study conducts a comparative analysis between PMVMs and conventional PMSMs at a power level of 5 MW for podded ship propulsion, with a particular focus on the impact of gear ratios (Gr). An objective function was developed that integrates motor dimension constraints and the power factor (PF), a critical yet frequently neglected parameter in existing research. The findings indicate that PMVMs with lower Gr have lower mass and cost compared to those with higher Gr and traditional PMSMs, at a PF level of 0.7, which is high for Vernier machines. Moreover, PMVMs with lower Gr achieve efficiencies exceeding 99%, outperforming both their higher Gr counterparts and conventional PMSMs. The superior performance of PMVMs is attributed to lower current density and reduced copper loss, which contribute to their enhanced thermal performance. These details are elaborated on further in the paper. Consequently, these findings suggest that PMVMs with lower Gr are particularly well suited for high-power maritime propulsion applications, offering advantages in terms of compactness, efficiency (EF), cost-effectiveness, and thermal performance.

More from our Archive