DOI: 10.3390/ma17081788 ISSN: 1996-1944

Designing Prepregnation and Fused Filament Fabrication Parameters for Recycled PP- and PA-Based Continuous Carbon Fiber Composites

Marah Baddour, Ruth Garcia-Campà, Pablo Reyes, Dagmar R. D’hooge, Ludwig Cardon, Mariya Edeleva
  • General Materials Science

Continuous carbon fiber (cCF)-based 3D-printed polymer composites are known for their excellent flexural properties; however, the optimization of the overall process is still desired, depending on the material types involved. Here, the improved manufacturing of cCF-based composites is reported, considering virgin polyamide (PA) and postindustrial waste polypropylene (PP), and the parameters affecting the material properties are evaluated. Firstly, the prepregnation technique was optimized to manufacture cCF polymer filaments with various fiber-to-polymer ratios. Secondly, the fused filament fabrication (FFF) technique was optimized. It was observed that the layer height needs to be sufficiently low for proper interlayer adhesion. The influence of the printing temperature is more complicated, with filaments characterized by a lower fiber-to-polymer ratio requiring a higher nozzle diameter and higher temperatures for efficient printing; and for lower diameters, the best flexural properties are observed for parts printed at lower temperatures, maintaining a high interspace distance. Plasma treatment of the cCF was also explored, as was annealing of the produced parts to enhance the flexural properties, the latter being specifically interesting for the PP-based composite due to a lower wetting caused by a higher viscosity, despite supportive interfacial interactions. Eventually, overall guidelines were formulated for the successful production of cCF-based composites.

More from our Archive