Development of a Multidimensional Analysis and Integrated Visualization Method for Maritime Traffic Behaviors Using DBSCAN-Based Dynamic Clustering
Daehan Lee, Daun Jang, Sanglok YooAutomatic Identification System (AIS) data offer essential insights into maritime traffic patterns; however, effective visualization tools for decision-making remain limited. This study presents an integrated visualization processing method to support ship operators by identifying maritime traffic behavior information, such as traffic density, direction, and flow in specific sea navigational areas. We analyzed AIS dynamic data from a specific sea area, calculated ship density distributions across a grid lattice, and obtained visualizations of traffic-dense areas as heat maps. Using the density-based spatial clustering of applications with a noise algorithm, we detected traffic direction at each grid point, which was visualized in the form of directional arrows, and clustered ship trajectories to identify representative traffic flows. The visualizations were integrated and overlaid onto an S-57-based electronic nautical map for Mokpo’s entry and exit routes, revealing primary shipping lanes and critical inflection points within the target area. This integrated visualization method simultaneously displays traffic density, flow, and customary routes. It is adapted for the electronic nautical chart (S-101) under the next-generation hydrographic information standard (S-100), which can be used as a tool to support decision-making for ship operators.