Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives
Ruifeng Yan, Danni Ma, Yutong Liu, Rui Wang, Lifan Fan, Qiqi Yan, Chen Chen, Wenhao Wang, Zhihua Ren, Tingting Ku, Xia Ning, Nan Sang- Chemical Health and Safety
- Health, Toxicology and Mutagenesis
- Toxicology
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.