Dielectric Elastomer-Based Actuators: A Modeling and Control Review for Non-Experts
Hector Medina, Carson Farmer, Issac Liu- Control and Optimization
- Control and Systems Engineering
Soft robotics are attractive to researchers and developers due to their potential for biomimicry applications across a myriad of fields, including biomedicine (e.g., surgery), the film industry (e.g., animatronics), ecology (e.g., physical ‘animats’), human–robot interactions (e.g., social robots), and others. In contrast to their rigid counterparts, soft robotics offer obvious actuation benefits, including their many degrees of freedom in motion and their potential to mimic living organisms. Many material systems have been proposed and used for soft robotic applications, involving soft actuators, sensors, and generators. This review focuses on dielectric elastomer (DE)-based actuators, which are more general electro-active polymer (EAP) smart materials. EAP-based soft robots are very attractive for various reasons: (a) energy can be efficiently (and readily) stored in electrical form; (b) both power and information can be transferred rapidly via electrical phenomena; (c) computations using electronic means are readily available. Due to their potential and benefits, DE-based actuators are attractive to researchers and developers from multiple fields. This review aims to (1) provide non-experts with an “easy-to-follow” survey of the most important aspects and challenges to consider when implementing DE-based soft actuators, and (2) emphasize current solutions and challenges related to the materials, controls, and portability of DE-based soft-actuator systems. First, we start with some fundamental functions, applications, and configurations; then, we review the material models and their selection. After, we outline material limitations and challenges along with some thermo-mechano-chemical treatments to overcome some of those limitations. Finally, we outline some of the control schemes, including modern techniques, and suggest using rewritable hardware for faster and more adaptive controls.