Yaxiu HOU, Shuqi SHANG, Xiang LI, Xiaoning HE, Haifeng ZHENG, Tongtong DONG, Xu LI, Zhixin LIU, Shuai YANG, Dongwei WANG

DISCRETE ELEMENT METHOD (EDEM) SIMULATION AND PARAMETER OPTIMIZATION: DESIGN AND TESTING OF A LOW-LOSS AND HIGH-EFFICIENCY CORN THRESHING DEVICE

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Food Science

Aiming at the problems of low threshing efficiency and high damage rate of current threshing devices. In this study, the operational form of the threshing drum and the structure of the threshing element were innovated, and a new threshing drum with low damage and high efficiency was designed. Using EDEM software, flexible body modeling of corn kernels, cobs and whole ears was carried out. The dynamic analysis of the corn threshing process was completed and the simulation parameters were further optimized. The optimum operating parameters were analyzed by orthogonal rotational tests and response surface method with a speed of 800 r/min for the threshing drum, a clearance of 10 mm for the concave plate and 30 mm for the threshing drum. The radius of the round head of the threshing element was 5 mm. The height of the threshing element was 60 mm. The final threshing efficiency was 98.78% and the damage rate of threshing was 0.62%. The results show that the new threshing device can meet the requirements of low-loss threshing devices for corn combine harvesters and can provide a theoretical basis for the development of the theory and technical system of corn plot combine harvesters in the future.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive