DOI: 10.3390/app15073721 ISSN: 2076-3417

Ecological Concrete-Based Modular System for Heavy Metal Removal in Riparian Transition Zones: Design, Optimization and Performance Evaluation

Guangbing Liu, Da Ke, Hasnain Moavia, Chen Ling, Yanhong Zhang, Yu Shen

This study presents the development and evaluation of an innovative modular ecological transition zone system for riparian restoration. Through systematic optimization, we developed a C25-grade ecological concrete module (100 mm × 100 mm × 100 mm) with a specialized cavity design (φ61 mm × H60 mm) that achieves optimal balance between structural integrity (20–30 MPa compressive strength) and environmental functionality (>15% porosity, >1 × 10−4 cm s−1 permeability). The module incorporates precisely calibrated proportions of cement (378 kg m−3), reinforcing agent (12 kg m−3), aggregate (1650 kg m−3), and water (137 L m−3), creating a robust platform for environmental remediation. The system was evaluated at two scales: module-scale experiments in 25 L containers (833:1 mL g−1 ratio) and kinetic studies (10:1 mL g−1 ratio), revealing a sophisticated three-phase removal process. The initial rapid surface adsorption phase (0–4 h) achieved removal rates of 0.28–0.42 mg g−1 h−1, followed by pore diffusion (4–24 h) and chemical fixation phases, with removal patterns effectively modeled using a modified pseudo-second-order equation. The system demonstrated exceptional heavy metal removal capabilities across varying concentration ranges, achieving removal efficiencies of 95.6% for Pb2+ ions, 92.3% for Cd2+ ions, 84.2% for Cr3+ ions, 89.7% for Cu2+ ions, and 84.8% for Zn2+ ions under optimal conditions. Performance remained robust across two orders of magnitude in concentration ranges, with removal efficiencies maintaining above 80% at both experimental scales. The modular design’s cost-effectiveness is demonstrated through material costs of USD 45–60 m−3, with operational costs 40–60% lower than conventional systems. This research provides a practical, cost-effective solution for riparian zone restoration, combining structural durability with efficient pollutant removal capabilities while maintaining consistent performance across varying environmental conditions.

More from our Archive