Ziyi Cai, Xiaowen Song, Xiulun Wang, Tongxin Guo, Hiroshi Takahashi, Changqing Cai

Effect of Applied Pressure on the Performance of Biodegradable Fiber Insulation Board Manufactured from Camphor Branches (Cinnamomum camphora)

  • Forestry

Currently, the predominant thermal insulation materials in the construction industry are primarily derived from inorganic sources. While these materials demonstrate commendable thermal insulation capabilities, their widespread use raises significant environmental concerns. The utilization of wood fiber materials presents a promising solution to mitigate these drawbacks. This study focuses on the fabrication of biodegradable fiber insulation board (BFIB) using camphor branches. The manufacturing process avoids the use of chemical additives, employing a physical method that utilizes hot pressing and relies on the formation of intermolecular hydrogen and hydroxide bonds between the fibers. The study evaluates the influence of applied pressure on the properties of BFIB. SEM images reveal that, with an increase in applied pressure, the fibers exhibit a more regular pattern, subsequently enhancing the mechanical properties, hygric behavior, and fire resistance properties of BFIB. As an environmentally friendly and renewable material, BFIB holds the potential to substitute conventional insulation materials. It is particularly intriguing for energy-saving purposes when applied as building insulation for walls or ceilings.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive