DOI: 10.3390/jmse13030456 ISSN: 2077-1312

Effect of Flow Field with Baffles on Performance of High Temperature Proton Exchange Membrane Fuel Cells

Shian Li, Shuqian Zhang, Qiuwan Shen

With the implementation of strict emission regulations, new energy technologies are widely used in the field of maritime transportation. Fuel cells can be used as the power sources of ships due to the advantages of high efficiency, low noise and zero emissions. In this study, a three-dimensional non-isothermal numerical model of a high temperature proton exchange membrane fuel cell (HT-PEMFC) is established and used to investigate the effect of a flow field with baffles on cell performance. The effects of the number, height and length of baffles in the flow field on the species concentration distribution, current density and power density are comprehensively studied. Compared with the traditional straight channel, the baffles in the channel can effectively improve cell performance. When the number of baffles is nine, the height of the baffles is 0.75 mm and the length of the baffles is 1 mm, the current density is increased from 1.390 A/cm2 to 1.524 A/cm2 at a voltage of 0.4 V, which is an increase of 9.64%. This study can provide guidelines for flow channel design.

More from our Archive