DOI: 10.3390/min15010056 ISSN: 2075-163X

Enhancing Biogenic Scorodite Formation Using Waste Iron Sludge: A Sustainable Approach for Arsenic Immobilization

Kazuma Kimura, Naoko Okibe

Arsenic (As) contamination in water poses significant environmental and health risks, particularly in mining regions. Scorodite (FeAsO4·2H2O) is a highly stable compound for As immobilization, traditionally synthesized under high As concentrations and extreme conditions, such as elevated temperatures and pressures. This study explores a sustainable alternative by utilizing Fe-sludge, a waste by-product from acid mine drainage (AMD) treatment, as a novel Fe source for biogenic scorodite formation mediated by the thermo-acidophilic archaeon Acidianus brierleyi. Through a systematic evaluation of Fe-sludge incorporation, the study investigates its impact on microbial activity, As immobilization efficiency, and scorodite crystallization mechanisms. Liquid and solid analyses demonstrate that Fe-sludge enhances the reaction rate and crystallinity of scorodite while bypassing the induction period required in Fe2+-only systems. Cross-sectional SEM imaging and EXAFS analysis reveal dynamic transformations on the Fe-sludge surface, supporting faster As adsorption and scorodite nucleation through Fe-S intermediates. Despite potential challenges to microbial activity at higher Fe-sludge concentrations, optimized conditions successfully balance cell viability and Fe utilization. This approach offers an eco-friendly, cost-effective pathway for As immobilization by repurposing AMD sludge, contributing to sustainable resource management and reducing environmental impact.

More from our Archive