DOI: 10.1002/dac.5773 ISSN: 1074-5351

Enhancing energy‐efficient sleep scheduling for Narrowband Internet of Things devices in coordinated 5G networks within smart environments

L. K. Hema, Regilan Soosai Raj, Jenitha J.
  • Electrical and Electronic Engineering
  • Computer Networks and Communications

Summary

This research project takes on a crucial role in the quickly changing field of integrated 5G networks inside smart environments by concentrating on the creation of an extremely effective sleep scheduling system designed especially for Narrowband Internet of Things (NB‐IoT) devices. This work introduces a unique method for precisely controlling the nodes' sleep schedules through the use of convolutional neural network (CNN) architecture, which optimizes both energy usage and operating patterns. The principal goal still stands to guarantee the extended lifetime of operation and dependability of NB‐IoT devices in the larger framework of intelligent ecosystems driven by synchronized 5G networks. To achieve its objectives, the research explores a number of complex domains and employs cutting‐edge technologies and techniques, such as CNN‐based pattern recognition. This method's real‐time component is essential since it allows for prompt modifications to sleep schedules in order to optimize energy savings. Further boosting the devices' effectiveness and flexibility is continuous contact with a central server, which guarantees that the devices are updated with the most recent data and instructions. Essentially, the main objective of this study is to greatly increase the energy economy and operational lifetime of NB‐IoT devices, which will allow for stable and long‐lasting IoT deployments in the context of 5G networks in intelligent settings. This advancement is not only a boon for businesses and industries leveraging IoT technology but also a substantial step toward building smarter, more energy‐efficient, and resilient smart ecosystems that benefit society as a whole.

More from our Archive