DOI: 10.1158/1535-7163.mct-23-0641 ISSN: 1535-7163

Enhancing standard of care chemotherapy efficacy using DNA-dependent protein kinase (DNA-PK) inhibition in preclinical models of Ewing sarcoma

Victor J. Collins, Katelyn R. Ludwig, Ariana E. Nelson, Soumya Sundara Rajan, Choh Yeung, Ksenia Vulikh, Kristine A. Isanogle, Arnulfo Mendoza, Simone Difilippantonio, Baktiar O. Karim, Natasha J. Caplen, Christine M. Heske

Abstract

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on non-homologous end joining (NHEJ) to repair DNA damage. In this study, we investigated if pharmacological inhibition of the enzyme responsible for NHEJ, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe Additivity Model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single agent TOP2 poisons induced G2M arrest and little apoptotic response, while adding DNA-PKi mediated apoptosis. In vivo, the combination of AZD-7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.

More from our Archive