DOI: 10.3390/rs16081410 ISSN: 2072-4292

Estimation of All-Day Aerosol Optical Depth in the Beijing–Tianjin–Hebei Region Using Ground Air Quality Data

Wenhao Zhang, Sijia Liu, Xiaoyang Chen, Xiaofei Mi, Xingfa Gu, Tao Yu
  • General Earth and Planetary Sciences

Atmospheric aerosols affect climate change, air quality, and human health. The aerosol optical depth (AOD) is a widely utilized parameter for estimating the concentration of atmospheric aerosols. Consequently, continuous AOD monitoring is crucial for environmental studies. However, a method to continuously monitor the AOD throughout the day or night remains a challenge. This study introduces a method for estimating the All-Day AOD using ground air quality and meteorological data. This method allows for the hourly estimation of the AOD throughout the day in the Beijing–Tianjin–Hebei (BTH) region and addresses the lack of high temporal resolution monitoring of the AOD during the nighttime. The results of the proposed All-Day AOD estimation method were validated against AOD measurements from Advanced Himawari Imager (AHI) and Aerosol Robotic Network (AERONET). The R2 between the estimated AOD and AHI was 0.855, with a root mean square error of 0.134. Two AERONET sites in BTH were selected for analysis. The results indicated that the absolute error between the estimated AOD and AERONET was within acceptable limits. The estimated AOD showed spatial and temporal trends comparable to those of AERONET and AHI. In addition, the hourly mean AOD was analyzed for each city in BTH. The hourly mean AOD in each city exhibits a smooth change at night. In conclusion, the proposed AOD estimation method offers valuable data for investigating the impact of aerosol radiative forcing and assessing its influence on climate change.

More from our Archive