DOI: 10.3390/ani14060967 ISSN: 2076-2615

Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay

Helder P. B. Nunes, Cristiana S. A. M. Maduro Dias, Nuno V. Álvaro, Alfredo E. S. Borba
  • General Veterinary
  • Animal Science and Zoology

The utilisation of seaweeds as feed supplements has been investigated for their potential to mitigate enteric methane emissions from ruminants. Enteric methane emissions are the primary source of direct greenhouse gas emissions in livestock and significantly contribute to anthropogenic methane emissions worldwide. The aim of the present study is to evaluate the nutritional role and the in vitro effect on cumulative gas and methane production of Asparagopsis taxiformis (native species) and Asparagopsis armata (invasive species), two species of red algae from the Azorean Sea, as well as the ability to reduce biogas production when incubated with single pasture (Lolium perenne and Trifollium repens) as substrate. Four levels of concentrations marine algae were used (1.25%, 2.25%, 5%, and 10% DM) and added to the substrate to evaluate ruminal fermentation using the in vitro gas production technique. The total amount of gas and methane produced by the treatment incubation was recorded during 72 h of incubation. The results indicate that both algae species under investigation contain relatively high levels of protein (22.69% and 24.23%, respectively, for Asparagopsis taxiformis and Asparagopsis armata) and significant amounts of minerals, namely magnesium (1.15% DM), sodium (8.6% DM), and iron (2851 ppm). Concerning in vitro ruminal fermentation, it was observed that A. taxiformis can reduce enteric methane production by approximately 86%, during the first 24 h when 5% is added. In the same period and at the same concentration, A. armata reduced methane production by 34%. Thus, it can be concluded that Asparagopsis species from the Azorean Sea have high potential as a protein and mineral supplement, in addition to enabling a reduction in methane production from rumen fermentation.

More from our Archive