Aijun Zhu, Pengcheng Bu, Lei Cheng, Cong Hu, Rabi Mahapatra

High-Sensitivity Sensor Based on Diametrical Graphene Strip Plasma-Induced Transparency

  • Radiology, Nuclear Medicine and imaging
  • Instrumentation
  • Atomic and Molecular Physics, and Optics

In this paper, two parallel graphene strip structures are adopted to achieve tunable plasma-induced transparency (PIT) sensors in the terahertz band. Both graphene bands act as bright modes, and a PIT window appears due to the weak hybridization between them. A Lorentzian oscillation coupling model is fitted to the simulation results of the proposed structure by the finite-difference time-domain (FDTD) method and is in good agreement with the simulation results. The performance of the PIT system can be controlled by tuning the geometrical parameters of the structure. In addition, the resonant frequency of the PIT window can be dynamically adjusted by changing the chemical potential and carrier mobility of the graphene strips. When the chemical potential of graphene increases from 0.2 eV to 1 eV, the amplitude modulation depth of the PIT window (2.832 THz, 3.684 THz, and 4.386 THz) can reach 92.39%, 96.14%, and 90.4%, respectively. Furthermore, due to its dispersion characteristics, the realized PIT window has a sensitive response to the surrounding medium, and the sensitivity can be as high as 1.25 THz/RIU. This PIT effect-based graphene microstructure has important implications for the future design of terahertz modulators, optical switches, and ultrasensitive sensors.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive