DOI: 10.1227/ons.0000000000001151 ISSN: 2332-4252

How Accurate Is Frameless Fiducial—Free Deep Brain Stimulation?

Canio Pietro Picciano, Paolo Mantovani, Vittoria Rosetti, Giulia Giannini, Marianna Pegoli, Carlo Alberto Castioni, Ilaria Cani, Luca Baldelli, Pietro Cortelli, Alfredo Conti
  • Neurology (clinical)
  • Surgery

BACKGROUND AND OBJECTIVES:

Frameless deep brain stimulation (DBS) offers advantages in terms of patient comfort and reduced operative time. However, the need for bony fiducial markers for localization remains a drawback due to the time-consuming and uncomfortable procedure. An alternative localization method involves the direct tracking of an intraoperative 3-dimensional scanner. This study aims to assess the accuracy of the NexFrame frameless DBS system in conjunction with the O-Arm (Medtronic Inc.), both with and without fiducial markers.

METHODS:

The locations of 100 DBS leads were determined, with 50 cases using fiducial-free localization and 50 involving fiducial markers. The coordinates were compared with the expected intraoperative targets. Absolute errors in the X, Y, and Z coordinates (ΔX, ΔY, and ΔZ) were calculated, along with the vector error (Euclidean) (vector error ).

RESULTS:

The vector error averaged 1.61 ± 0.49 mm (right) and 1.52 ± 0.60 mm (left) for the group without fiducial bone markers and 1.66 ± 0.69 (right) and 1.44 ± 0.65 mm (left) for the other cohort (P = .76 right; P = .67 left). Absolute errors in the X, Y, and Z coordinates for the fiducial-free group were 0.88 ± 0.55, 0.79 ± 0.45, and 0.79 ± 0.57 mm (right) and 0.72 ± 0.37, 0.78 ± 0.56, and 0.77 ± 0.71 mm (left). For the group with fiducial markers, these errors were 0.87 ± 0.72, 0.92 ± 0.39, and 0.86 ± 0.50 mm (right) and 0.75 ± 0.33, 0.80 ± 0.51, and 0.73 ± 0.64 mm (left) with no statistically significant difference.

CONCLUSION:

Our analysis of the accuracy of NexFrame DBS, both with and without fiducial markers, using an intraoperative navigable cone-beam computed tomography, demonstrates that both techniques provide sufficient and equivalent 3-dimensional accuracy.

More from our Archive