Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis
Binqiang Xu, Yang Fu, Nuoming Yin, Wenfei Qin, Zehua Huang, Wei Xiao, Huizhen Huang, Qixiang Mei, Junjie Fan, Yue Zeng, Chunlan Huang- Physiology (medical)
- Gastroenterology
- Hepatology
- Physiology
Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. 40 donors were divided into high (donor-H) and low (donor-L) groups according to diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor-H ( p <0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy ( p <0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group ( p <0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.