DOI: 10.3390/s25072180 ISSN: 1424-8220

Impact of Image Preprocessing and Crack Type Distribution on YOLOv8-Based Road Crack Detection

Luxin Fan, Saihong Tang, Mohd Khairol Anuar b. Mohd Ariffin, Mohd Idris Shah Ismail, Xinming Wang

Road crack detection is crucial for ensuring pavement safety and optimizing maintenance strategies. This study investigated the impact of image preprocessing methods and dataset balance on the performance of YOLOv8s-based crack detection. Four datasets (CFD, Crack500, CrackTree200, and CrackVariety) were evaluated using three image formats: RGB, grayscale (five conversion methods), and binarized images. The experimental results indicate that RGB images consistently achieved the highest detection accuracy, confirming that preserving color-based contrast and texture information benefits YOLOv8’s feature extraction. Grayscale conversion showed dataset-dependent variations, with different methods performing best on different datasets, while binarization generally degraded detection accuracy, except in the balanced CrackVariety dataset. Furthermore, this study highlights that dataset balance significantly impacts model performance, as imbalanced datasets (CFD, Crack500, CrackTree200) led to biased predictions favoring dominant crack classes. In contrast, CrackVariety’s balanced distribution resulted in more stable and generalized detection. These findings suggest that dataset balance has a greater influence on detection accuracy than preprocessing methods. Future research should focus on data augmentation and resampling strategies to mitigate class imbalance, as well as explore multi-modal fusion approaches for further performance enhancements.

More from our Archive