DOI: 10.1115/1.4064151 ISSN: 0742-4795

Insights Into Frictional Brush Seal Hysteresis

Hien M Phan, Michael J Pekris, John W. Chew
  • Mechanical Engineering
  • Energy Engineering and Power Technology
  • Aerospace Engineering
  • Fuel Technology
  • Nuclear Energy and Engineering

Abstract

Brush seals offer a superior sealing effectiveness compared to labyrinth seals. However, widespread use of brush seals is constrained by deleterious behaviors such as pressure-stiffening and hysteresis. For the latter, the bristles bend during the shaft incursion process and do not fully recover during the shaft retraction process. An opening gap is created, which increases seal leakage unless the pressure load drops to a certain level. In the present work, analytical and numerical models based on a single bristle are proposed to capture the seal's response to shaft displacement with and without pressure loading. The models are validated using static stiffness tests at an unpressurized condition from literature. The main results show that modeling of the backing ring friction is essential to capture the bristle hang-up behavior. Shaft friction dominates at unpressurized conditions, while backing ring friction dominates at high pressure loading. An expression for shaft hang-up displacement has been derived. A sensitivity study shows that seals with shallow lay angle, short bristle length, and large bristle diameter are less prone to hang-up problems. The models developed in the present framework have been shown to qualitatively capture the pressure stiffening, hysteresis, bristle hang-up, and shaft rotation effects.

More from our Archive