Kai Li, Biao Zhang, Quanbao Cheng, Yuntong Dai, Yong Yu

Light-Fueled Synchronization of Two Coupled Liquid Crystal Elastomer Self-Oscillators

  • Polymers and Plastics
  • General Chemistry

The synchronization and group behaviors of self-excited coupled oscillators are common in nature and deserve to be explored, for self-excited motions have the advantages of actively collecting energy from the environment, being autonomous, making equipment portable, and so on. Based on light-powered self-excited oscillators composed of liquid crystal elastomer (LCE) bars, the synchronization of two self-excited coupled oscillators is theoretically studied. Numerical calculations show that self-excited oscillations of the system have two synchronization modes, in-phase mode and anti-phase mode, which are mainly determined by their interaction. The time histories of various quantities are calculated to elucidate the mechanism of self-excited oscillation and synchronization. For strong interactions, the system always develops into in-phase synchronization mode, while for weak interaction, the system will evolve into anti-phase synchronization mode. Furthermore, the effects of initial conditions, contraction coefficient, light intensity, and damping coefficient on the two synchronization modes of the self-excited oscillation are investigated extensively. The initial condition generally does not affect the synchronization mode and its amplitude. The amplitude of self-oscillation always increases with increasing contraction coefficient, gravitational acceleration, and light intensity, while it decreases with the increasing damping coefficient. This work will deepen people’s understanding of the synchronization behaviors of self-excited coupled oscillators, and the theoretical framework could be extended to scenarios involving large-scale synchronization of the systems with numerous interacting oscillators.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive