MEMPSEP‐I. Forecasting the Probability of Solar Energetic Particle Event Occurrence Using a Multivariate Ensemble of Convolutional Neural Networks
Subhamoy Chatterjee, Maher A. Dayeh, Andrés Muñoz‐Jaramillo, Hazel M. Bain, Kimberly Moreland, Samuel HartAbstract
The Sun continuously affects the interplanetary environment through a host of interconnected and dynamic physical processes. Solar flares, Coronal Mass Ejections (CMEs), and Solar Energetic Particles (SEPs) are among the key drivers of space weather in the near‐Earth environment and beyond. While some CMEs and flares are associated with intense SEPs, some show little to no SEP association. To date, robust long‐term (hours‐days) forecasting of SEP occurrence and associated properties (e.g., onset, peak intensities) does not effectively exist and the search for such development continues. Through an Operations‐2‐Research support, we developed a self‐contained model that utilizes a comprehensive data set and provides a probabilistic forecast for SEP event occurrence and its properties. The model is named Multivariate Ensemble of Models for Probabilistic Forecast of Solar Energetic Particles (MEMPSEP). MEMPSEP workhorse is an ensemble of Convolutional Neural Networks that ingests a comprehensive data set (MEMPSEP‐III by Moreland et al. (2024,