Viacheslav V. Krylov, Elena A. Osipova

Molecular Biological Effects of Weak Low-Frequency Magnetic Fields: Frequency–Amplitude Efficiency Windows and Possible Mechanisms

  • Inorganic Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Spectroscopy
  • Molecular Biology
  • General Medicine
  • Catalysis

This review covers the phenomenon of resonance-like responses of biological systems to low-frequency magnetic fields (LFMF). The historical development of this branch of magnetobiology, including the most notable biophysical models that explain the resonance-like responses of biological systems to LFMF with a specific frequency and amplitude, is given. Two groups can be distinguished among these models: one considers ion-cofactors of proteins as the primary targets for the LFMF influence, and the other regards the magnetic moments of particles in biomolecules. Attention is paid to the dependence of resonance-like LFMF effects on the cell type. A radical-pair mechanism of the magnetic field’s influence on biochemical processes is described with the example of cryptochrome. Conditions for this mechanism’s applicability to explain the biological effects of LFMF are given. A model of the influence of LFMF on radical pairs in biochemical oscillators, which can explain the frequency–amplitude efficiency windows of LFMF, is proposed.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive