Neuropsychiatric adverse effects from CFTR modulators deserve a serious research effort
Michael B. VanElzakker, Emma M. Tillman, Lael Yonker, Eva-Maria Ratai, Anna M. Georgiopoulos- Pulmonary and Respiratory Medicine
Purpose of review
This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic hypothesis, and potential solutions requiring further research.
Recent findings
Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood, cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy.
Summary
Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain. Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator efficacy.