Chuan Zhou, Xixi Wang, Dongliang Liu, Meijuan Fei, Jie Dai, Daqin Guan, Zhiwei Hu, Linjuan Zhang, Yu Wang, Wei Wang, Ryan O'Hayre, San Ping Jiang, Wei Zhou, Meilin Liu, Zongping Shao

New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase

  • Energy (miscellaneous)
  • Waste Management and Disposal
  • Environmental Science (miscellaneous)
  • Water Science and Technology
  • General Materials Science
  • Renewable Energy, Sustainability and the Environment

For protonic ceramic fuel cells, it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface. However, a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas, but also suppress the O2 adsorption on the electrode surface. Herein, a new electrode design concept is proposed, that may overcome this dilemma. By introducing a second phase with high‐hydrating capability into a conventional cobalt‐free perovskite to form a unique nanocomposite electrode, high proton conductivity/concentration can be reached at low water content in atmosphere. In addition, the hydronation creates additional fast proton transport channel along the two‐phase interface. As a result, high protonic conductivity is reached, leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive