Optimizing a five-factor cocktail to prepare reparative macrophages for wound healing
Rong Yong, Ruoyu Mu, Congwei Han, Tzuwei Chao, Yu Liu, Lei Dong, Chunming Wang- Cell Biology
- Immunology
- Immunology and Allergy
Abstract
The treatment of non-healing wounds, such as diabetic ulcers, remains a critical clinical challenge. Recent breakthroughs in cell therapy have shown great promise, with one primary focus on preparing cells with comprehensive reparative functions and foreseeable safety. In our previous study, we recapitulated the pro-regenerative and immunosuppressive functions of tumor-associated macrophages (TAMs) in non-tumor-derived macrophages, endowing the latter with characteristics for promoting diabetic wound healing – termed TAMs-educated macrophages (TAMEMs). To eliminate the use of tumor-derived sources and devise a more controllable method to prepare TAMEM-like cells, in this study, we identify a cocktail comprising five recombinant proteins as an essential condition to induce non-polarized macrophages (termed TAMEMs5) into therapeutic cells with pro-healing functions. The screened five factors are osteopontin (OPN), macrophage inflammatory protein (MIP)-2, chemokine (C-C motif) ligand 8 (CCL8), vascular endothelial growth factor (VEGF)-B, and macrophage colony-stimulating factor (M-CSF). We demonstrate the rationale for screening these factors and the phenotype of TAMEMs5 prepared from murine bone marrow-derived macrophages, which exhibit angiogenic and immunomodulatory effects in vitro. Then, we induce primary human monocytes from periphery blood into TAMEMs5, which show pro-healing effects in a human primary cell-based ex vivo model (T-SkinTM). Our study demonstrates a simple, effective, and controllable approach to induce primary macrophages to possess repairing activities, which may provide insights for developing cell-based therapeutics for non-healing wounds clinically.