DOI: 10.1002/bimj.202200333 ISSN: 0323-3847

Pairwise fitting of piecewise mixed models for the joint modeling of multivariate longitudinal outcomes, in a randomized crossover trial

Moses Mwangi, Geert Molenberghs, Edmund Njeru Njagi, Samuel Mwalili, Roel Braekers, Alvaro Jose Florez, Susan Gachau, Zipporah N. Bukania, Geert Verbeke
  • Statistics, Probability and Uncertainty
  • General Medicine
  • Statistics and Probability

Abstract

Many statistical models have been proposed in the literature for the analysis of longitudinal data. One may propose to model two or more correlated longitudinal processes simultaneously, with a goal of understanding their association over time. Joint modeling is then required to carefully study the association structure among the outcomes as well as drawing joint inferences about the different outcomes. In this study, we sought to model the associations among six nutrition outcomes while circumventing the computational challenge posed by their clustered and high‐dimensional nature. We analyzed data from a 2 2 randomized crossover trial conducted in Kenya, to compare the effect of high‐dose and low‐dose iodine in household salt on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in women of reproductive age and their household matching pair of school‐aged children. Two additional outcomes, namely, urinary iodine concentration (UIC) in women and children were measured repeatedly to monitor the amount of iodine excreted through urine. We extended the model proposed by Mwangi et al. (2021, Communications in Statistics: Case Studies, Data Analysis and Applications, 7(3), 413–431) allowing flexible piecewise joint models for six outcomes to depend on separate random effects, which are themselves correlated. This entailed fitting 15 bivariate general linear mixed models and deriving inference for the joint model using pseudo‐likelihood theory. We analyzed the outcomes separately and jointly using piecewise linear mixed‐effects (PLME) model and further validated the results using current state‐of‐the‐art Jones and Kenward methodology (JKME model) used for analyzing randomized crossover trials. The results indicate that high‐dose iodine in salt significantly reduced blood pressure (BP) compared to low‐dose iodine in salt. Estimates for the random effects and residual error components showed that SBP and DBP had strong positive correlation, with effect of the random slope indicating that significantly related outcomes are strongly associated in their evolution. There was a moderately strong inverse relationship between evolutions of UIC and BP both in women and children. These findings confirmed the original hypothesis that high‐dose iodine salt has significant lowering effect on BP. We further sought to evaluate the performance of our proposed PLME model against the widely used JKME model, within the multivariate joint modeling framework through a simulation study mimicking a crossover design. From our findings, the multivariate joint PLME model performed exceptionally well both in estimation of random‐effects matrix (G) and Hessian matrix (H), allowing satisfactory model convergence during estimation. It allowed a more complex fit to the data with both random intercepts and slopes effects compared to the multivariate joint JKME model that allowed for random intercepts only. When a hierarchical viewpoint is adopted, in the sense that outcomes are specified conditionally upon random effects, the variance–covariance matrix of the random effects must be positive definite. In some cases, additional random effects could explain much variability in the data, thus improving precision in estimation of the estimands (effect size) parameters. The key highlight in this evaluation shows that multivariate joint JKME model is a powerful tool especially while fitting mixed models with random intercepts only, in crossover design settings. Addition of random slopes may lead to model complexities in most cases, resulting in unsatisfactory model convergence during estimation. To circumvent convergence pitfalls, extention of JKME model to PLME model allows a more flexible fit to the data (generated from crossover design settings), especially in the multivariate joint modeling framework.

More from our Archive