Velpuri Manikanta, N. V. Umamahesh

Performance assessment of methods to estimate initial hydrologic conditions for event-based rainfall-runoff modelling

  • Management, Monitoring, Policy and Law
  • Atmospheric Science
  • Water Science and Technology
  • Global and Planetary Change

Abstract Event-based hydrological models are extensively adopted for the estimation of design floods and in operational flood forecasting frameworks. However, an accurate estimation of the initial hydrologic condition (IHC) is essential in enhancing the predictive capability of an event-based hydrological model. Hence, in this study, IHCs of an event-based conceptual model are estimated using two different methods: (1) assimilation of observed variables such as streamflow and soil moisture using an ensemble Kalman filter and (2) states obtained from the continuous model calibrated using four different calibration metrics. The observed flood events at the Jagdalpur catchment are simulated using a conceptual hydrologic model setup at two spatial resolutions (lumped and semi-distributed). The results of the study demonstrate that IHCs estimated by the continuous models perform better than those obtained through data assimilation. The performance of semi-distributed event-based models was found to be outperforming their lumped counterparts demonstrating the advantage of increased model resolution. The states obtained from the continuous models calibrated using Nash–Sutcliffe Efficiency (NSE) are performing well in initialising the event-based models. The median efficiency of the semi-distributed event-based model (based on states from the NSE calibrated continuous model) is 0.91 and 0.77 during calibration and validation periods, respectively.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive