Peroxymonosulfate Activation by Bi-Fe Oxide Co-Doped Graphitic Carbon Nitride for Degradation of Sulfamethoxazole: Performance and Mechanism
Zhili Wang, Lan Liang, Ning Li, Shuang Wu, Zhanjun Cheng, Beibei Yan, Guanyi Chen- Fluid Flow and Transfer Processes
- Computer Science Applications
- Process Chemistry and Technology
- General Engineering
- Instrumentation
- General Materials Science
Graphite carbon nitride (g-C3N4) has been employed as an emerging metal-free catalyst in heterogeneous catalysis. However, the catalyst has a poor activation property for peroxymonosulfate (PMS). In this study, Bi-Fe oxide co-doped g-C3N4 (Bi@Fe/CN) was synthesized for PMS activation to degrade sulfamethoxazole (SMX). In particular, Bi@Fe/CN-3 presented remarkable catalytic performance with 99.7% removal of SMX within 60 min in the PMS system. Additionally, Bi@Fe/CN-3 presented good stability and recyclability through the cycling experiments. Moreover, it was shown that free radicals (O2•−, •OH, and SO4•−) and non-free radicals (1O2) were the primary active species in the Bi@Fe/CN-3/PMS system. Bi, Fe, and surface lattice oxygen were confirmed to be the main contributors to the active species. This work elucidates the mechanism of activation of PMS by Bi@Fe/CN-3, which is beneficial to promote the application of bimetallic oxide-modified g-C3N4/PMS systems in wastewater treatment.