Predicting Hospitalization Length in Geriatric Patients Using Artificial Intelligence and Radiomics
Lorenzo Fantechi, Federico Barbarossa, Sara Cecchini, Lorenzo Zoppi, Giulio Amabili, Mirko Di Rosa, Enrico Paci, Daniela Fornarelli, Anna Rita Bonfigli, Fabrizia Lattanzio, Elvira Maranesi, Roberta Bevilacqua(1) Background: Predicting hospitalization length for COVID-19 patients is crucial for optimizing resource allocation and patient management. Radiomics, combined with machine learning (ML), offers a promising approach by extracting quantitative imaging features from CT scans. The aim of the present study is to use and adapt machine learning (ML) architectures, exploiting CT radiomics information, and analyze algorithms’ capability to predict hospitalization at the time of patient admission. (2) Methods: The original CT lung images of 168 COVID-19 patients underwent two segmentations, isolating the ground glass area of the lung parenchyma. After an isotropic voxel resampling and wavelet and Laplacian of Gaussian filtering, 92 intensity and texture radiomics features were extracted. Feature reduction was conducted by applying a last absolute shrinkage and selection operator (LASSO) to the radiomic features set. Three ML classification algorithms, linear support vector machine (LSVM), medium neural network (MNN), and ensemble subspace discriminant (ESD), were trained and validated through a 5-fold cross-validation technique. Model performance was assessed using accuracy, sensitivity, specificity, precision, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). (3) Results: The LSVM classifier achieved the highest predictive performance, with an accuracy of 86.0% and an AUC of 0.93. However, reliable outcomes are also registered when MNN and ESD architecture are used. (4) Conclusions: The study shows that radiomic features can be used to build a machine learning framework for predicting patient hospitalization duration. The findings suggest that radiomics-based ML models can accurately predict COVID-19 hospitalization length.