DOI: 10.3390/fire7040143 ISSN: 2571-6255

Prediction of DC Breakdown Voltage of Rod–Plate Gaps under Full-Flame Bridging Conditions

Ziheng Pu, Yuan Li, Peng Li, Kuan Ye, Kai Zhou, Ruizhe Zhang
  • Earth and Planetary Sciences (miscellaneous)
  • Safety Research
  • Environmental Science (miscellaneous)
  • Safety, Risk, Reliability and Quality
  • Building and Construction
  • Forestry

In order to evaluate the risk of transmission line tripping due to wildfires, it is necessary to predict the breakdown voltage of the insulation gap under the flame. Firstly, this paper studies the breakdown prediction of rod–plane gaps under the full-flame bridging of wooden cribs; it then obtains the breakdown voltage and the leakage current values of full-flame bridging considering different sizes of wooden cribs and different gap distances. Then, a multi-physical field simulation is carried out to obtain the flame gap characteristic parameters, such as spatial temperature. The feature quantity is normalized and reduced in dimension, and a prediction model for gap breakdown voltage under flame conditions based on a support vector machine (SVM) is established. Finally, the DC withstand voltage values and corresponding characteristic quantities under different flame gap conditions are used as sample sets to test the prediction model. The results show that the prediction error for small gap breakdown voltage is less than 2.6%. The samples were tested under different flame intensities for training and prediction, and the error was less than 3.3%. The small gap data for 30~60 cm is used to predict the breakdown voltage of the long gap for 100~140 cm, and the error is less than 3.2%. Compared with the fitting correction formula method proposed in existing research, the error is reduced by 11.5% and 4.4%, respectively, which verifies the effectiveness of the SVM prediction model.

More from our Archive