Ning Ma, Huaixian Yin, Kai Wang

Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory

  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

As a novel type of energy storage element, supercapacitors have been extensively used in power systems, transportation and industry due to their high power density, long cycle life and good low-temperature performance. The health status of supercapacitors is of vital importance to the safe operation of the entire energy storage system. In order to improve the prediction accuracy of the remaining useful life (RUL) of supercapacitors, this paper proposes a method based on the Harris hawks optimization (HHO) algorithm and long short-term memory (LSTM) recurrent neural networks (RNNs). The HHO algorithm has the advantages of a wide global search range and a high convergence speed. Therefore, the HHO algorithm is used to optimize the initial learning rate of LSTM RNNs and the number of hidden-layer units, so as to improve the stability and reliability of the system. The root mean square error (RMSE) between the predicted result and the observed result reduced to 0.0207, 0.026 and 0.0341. The prediction results show that the HHO-LSTM has higher accuracy and robustness than traditional LSTM and GRU (gate recurrent unit) models.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive